New Publications

Skeletal Muscle Regeneration in Advanced Diabetic Peripheral Neuropathy.

Journal: Foot & ankle international

Decreased lean muscle mass in the lower extremity in diabetic peripheral neuropathy (DPN) is thought to contribute to altered joint loading, immobility, and disability. However, the mechanism behind this loss is unknown and could derive from a reduction in size of myofibers (atrophy), destruction of myofibers (degeneration), or both. Degenerative changes require participation of muscle stem (satellite) cells to regenerate lost myofibers and restore lean mass. Determining the degenerative state and residual regenerative capacity of DPN muscle will inform the utility of regeneration-targeted therapeutic strategies.Biopsies were acquired from 2 muscles in 12 individuals with and without diabetic neuropathy undergoing below-knee amputation surgery. Biopsies were subdivided for histological analysis, transcriptional profiling, and satellite cell isolation and culture.Histological analysis revealed evidence of ongoing degeneration and regeneration in DPN muscles. Transcriptional profiling supports these findings, indicating significant upregulation of regeneration-related pathways. However, regeneration appeared to be limited in samples exhibiting the most severe structural pathology as only extremely small, immature regenerated myofibers were found. Immunostaining for satellite cells revealed a significant decrease in their relative frequency only in the subset with severe pathology. Similarly, a reduction in fusion in cultured satellite cells in this group suggests impairment in regenerative capacity in severe DPN pathology.DPN muscle exhibited features of degeneration with attempted regeneration. In the most severely pathological muscle samples, regeneration appeared to be stymied and our data suggest that this may be partly due to intrinsic dysfunction of the satellite cell pool in addition to extrinsic structural pathology (eg, nerve damage).Restoration of DPN muscle function for improved mobility and physical activity is a goal of surgical and rehabilitation clinicians. Identifying myofiber degeneration and compromised regeneration as contributors to dysfunction suggests that adjuvant cell-based therapies may improve clinical outcomes.
Kathryn Bohnert; Mary Hastings; David Sinacore; Jeffrey Johnson; Sandra Klein; Jeremy McCormick

SIRT1 Protects the Heart from ER Stress-Induced Injury by Promoting eEF2K/eEF2-Dependent Autophagy.

Journal: Cells 02/15/2020

Many recent studies have demonstrated the involvement of endoplasmic reticulum (ER) stress in the development of cardiac diseases and have suggested that modulation of ER stress response could be cardioprotective. Previously, we demonstrated that the deacetylase Sirtuin 1 (SIRT1) attenuates ER stress response and promotes cardiomyocyte survival. Here, we investigated whether and how autophagy plays a role in SIRT1-afforded cardioprotection against ER stress. The results revealed that protective autophagy was initiated before cell death in response to tunicamycin (TN)-induced ER stress in cardiac cells. SIRT1 inhibition decreased ER stress-induced autophagy, whereas its activation enhanced autophagy. In response to TN- or isoproterenol-induced ER stress, mice deficient for SIRT1 exhibited suppressed autophagy along with exacerbated cardiac dysfunction. At the molecular level, we found that in response to ER stress (i) the extinction of eEF2 or its kinase eEF2K not only reduced autophagy but further activated cell death, (ii) inhibition of SIRT1 inhibited the phosphorylation of eEF2, (iii) eIF2α co-immunoprecipitated with eEF2K, and (iv) knockdown of eIF2α reduced the phosphorylation of eEF2. Our results indicate that in response to ER stress, SIRT1 activation promotes cardiomyocyte survival by enhancing autophagy at least through activation of the eEF2K/eEF2 pathway.
Julie Da Silva; Kevin Monceaux; Arnaud Guilbert; Mélanie Gressette; Jérôme Piquereau; Marta Novotova

Bench to Bedside: Animal Models of Radiation Induced Musculoskeletal Toxicity.

Journal: Cancers

Ionizing radiation is a critical aspect of current cancer therapy. While classically mature bone was thought to be relatively radio-resistant, more recent data have shown this to not be the case. Radiation therapy (RT)-induced bone loss leading to fracture is a source of substantial morbidity. The mechanisms of RT likely involve multiple pathways, including changes in angiogenesis and bone vasculature, osteoblast damage/suppression, and increased osteoclast activity. The majority of bone loss appears to occur rapidly after exposure to ionizing RT, with significant changes in cortical thickness being detectable on computed tomography (CT) within three to four months. Additionally, there is a dose-response relationship. Cortical thinning is especially notable in areas of bone that receive >40 gray (Gy). Methods to mitigate toxicity due to RT-induced bone loss is an area of active investigation. There is an accruing clinical trial investigating the use of risderonate, a bisphosphonate, to prevent rib bone loss in patients undergoing lung stereotactic body radiation therapy (SBRT). Additionally, several other promising therapeutic/preventative approaches are being explored in preclinical studies, including parathyroid hormone (PTH), amifostine, and mechanical loading of irradiated bones.

Michael Farris; Corbin Helis; Ryan Hughes; Michael LeCompte; Alexander Borg; Karina Nieto